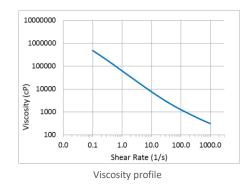


General Information

Sicrys™ P75DB-1, a conductive high viscous ink based on single-crystal silver nanoparticles in diethylene glycol butyl ether (DGBE), has been designed for LIFT (Laser Induced Forward Transfer) digital printing and laser sintering. The ink offers:

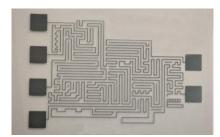
- · Uniform and reproducible donor layer with low drying speed
- Stable accurate jetting in different types of laser systems, wide working window of jetting parameters
- High speed printing (20-50kHz), allowing high throughput
- Narrow patterning on plastic and glass substrates (line width ~50 μm, height ~0.5 μm, spacing ~50 μm)
- Laser sintering of LIFT printed pattern, providing good electrical properties


Ink Properties	Typical Values
Metal Loading, Ag (w/w)	75 %
Particle Size (Lumisizer®)	d50 = 70 nm d90 = 130 nm
Specific Gravity	3.06 g/ml
Viscosity* Profile (Malvern Kinexus Pro+)	Shear rate 1/s - 62000 cP Shear rate 1000/s - 300 cP
Surface Tension (Pendant Drop Method)	28 dyn/cm
Particle Size and Morphology (HRSEM)	See HRSEM image
* - Viscosity is very sensitive to small changes in metal loading	

Nano Ag, HRSEM Image, x100,000

Laser Sintering#	Resistivity (4PP)
LIFT printed line (~1-2 µm thick)	≤ 8 μΩ·cm (≤ 5 bulk)
on glass or plastic substrate	


⁻ Parameters should be optimized depending on line geometry and substrate


Product Applications

Electrical Properties

LIFT digital printing Printed electronics Additive electronic manufacturing

LIFT printed RFID antenna Courtesy of TNO

LIFT printed highly dense maze (3x4cm², 70 µm lines, <0.7s, 20kHz) Courtesy of TNO

